
CONFIDENTIALITY: Use of this document is restricted to authorized members or staff of PRISM and to third parties
who are authorised by PRISM in terms of written agreement/s entered into with PRISM.
DISCLAIMER: PRISM makes no representations or warranties whether expressed or implied by or with respect to
anything in this document, and shall not be liable for any implied warranties of merchantability or fitness for a
particular purpose or for any indirect, special or consequential damages.

PrismVend Web Vending API

Copyright © 2013-2023 All Rights Reserved.

Document number PR-D2-1112

Revision 5.22.2

Authors Trevor Davel, Chris Adlington, Candice Moore

Date October 2023

Synopsis Describes the PrismVend Web Vending Service and API.

Copyright © 2013-2023

PR-D2-1112 rev 5.22.2 Page 2 of 39

1. Contents

1. CONTENTS .. 2

2. INSTALLING & USING THE WEB SERVICE ... 4

2.1 INSTALLATION ... 4
2.2 STARTING & STOPPING THE SERVICE ... 4
2.3 CONFIGURATION.. 4
2.4 ACCESSING WEB SERVICES .. 4
2.5 SECURITY PROCEDURES IN A PRODUCTION ENVIRONMENT .. 4
2.6 TROUBLESHOOTING ... 4
2.7 UPGRADING THE SOFTWARE .. 5
2.8 UNINSTALLING THE SOFTWARE ... 5

3. APPLICATION PROGRAMMING INTERFACE (API) .. 6

3.1 OVERVIEW ... 6
3.2 TERMS, DEFINITIONS AND ABBREVIATIONS.. 6
3.3 ACCESS CONTROL AND AUTHENTICATION ... 8
3.4 STATUS CODES... 8
3.5 OUTPUT FORMATS (REPRESENTATIONS) .. 8

3.5.1 INI (default) ... 8
3.5.2 TSV .. 9
3.5.3 XML ... 9

3.6 DEBUGGING ... 9
3.7 TARIFF FILE FORMAT .. 11

4. PRISMVEND API .. 12

4.1 API SERVICES .. 12
4.2 LEGACY API SERVICES .. 12
4.3 METER MANAGEMENT SERVICES .. 12
4.4 VEND CREDIT TOKEN (VENDCREDIT2) ... 13

4.4.1 Example of use #1 – INI response (with HTTP headers shown).. 15
4.4.2 Vend Credit Token (old) .. 17

4.5 VEND METER-SPECIFIC ENGINEERING TOKEN .. 19
4.6 QUERY TRANSACTION COUNTER ... 20

4.6.1 Example of use #1 – XML response ... 20
4.6.2 Example of use #2 – TSV response .. 20
4.6.3 Example of use #3 – INI response (format not specified) .. 20

4.7 CALCULATE WATT-HOURS (LEGACY) .. 21
4.7.1 Example of use #1 – XML response ... 21
4.7.2 Example of use #2 – TSV response .. 22
4.7.3 Example of use #3 – INI response (format not specified) .. 22

4.8 METER MANAGEMENT API: OVERVIEW .. 23
4.8.1 Meter Record ... 23

4.9 GET METER INFORMATION (GET/STSVEND/METER/DRNORPAN.FORMAT)..................................... 24
4.10 SET METER INFORMATION (POST/STSVEND/METER/DRNORPAN.FORMAT) 25
4.11 UPDATE METER KEY (POST/STSVEND/UPDATEMETERKEY.FORMAT) .. 26
4.12 ENGINEERING KEY CHANGE (POST/STSVEND/ENGINEERINGKEYCHANGE) 27

5. INTEGRATION GUIDE ... 29

5.1 RECOMMENDED SERVICES ... 29
5.1.1 Example of use #1 – XML response ..Error! Bookmark not defined.
5.1.2 Example of use #2 – TSV response ...Error! Bookmark not defined.
5.1.3 Example of use #3 – INI response (format not specified)Error! Bookmark not defined.

5.2 SPECIAL WARNINGS ... 30
5.3 INTEGRATION SETUP .. 30
5.4 EXAMPLES ... 31

Copyright © 2013-2023

PR-D2-1112 rev 5.22.2 Page 3 of 39

5.4.1 Electricity Credit Token, $50, Blind Vend ... 31
5.4.2 Electricity Credit Token, $100, MSNO Vend ... 32
5.4.3 Water Credit Token, $70, Blind Vend .. 33
5.4.4 Currency (Electricity) Credit Token, $120, Blind Vend .. 33
5.4.5 Currency (Electricity) Credit Token, Replay prevention ... 34
5.4.6 Replayed transaction is rejected .. 35
5.4.7 Clear Credit Management Token, MSNO Vend .. 36

6. AMENDMENT HISTORY .. 38

Copyright © 2013-2023

PR-D2-1112 rev 5.22.2 Page 4 of 39

2. Installing & Using the Web Service

2.1 Installation

Refer to PR-D2-1098 “PrismVend User Guide”.

2.2 Starting & Stopping the service

The Prism TsmWeb service may be controlled via the Windows Service Control Panel.

There are various ways to access the Service Control Panel:

 Computer Manager  Services and Applications  Services

 Administrative Tools  Services

 Start  Run  services.msc

Refer to PR-D2-1098 “PrismVend User Guide”.

2.3 Configuration

Refer to PR-D2-1098 “PrismVend User Guide”.

2.4 Accessing web services

Use your web browser to access the URL http://localhost:80/ to view the human-consumable
services provided by the software.

 If you have changed the service configuration you may need to specify a different
host or port in the URL.

 Services for automation, as documented in 3. Application Programming Interface
(API), cannot be accessed via a web browser. You must access them
programmatically or using a Debugging tool (section 3.6).

2.5 Security procedures in a production environment

Hardware Security Modules and cryptographic services should be operated with due regard
to security procedures designed to protect keys and prevent misuse of the services.

 Security procedures are outside the scope of this document.

 Networks and network-accessible services should be secured against unintended
access, for example by means of firewalls.

2.6 Troubleshooting

Problems starting the service:

 Check the System log in the Windows Event Viewer (accessible via Computer
Manager or Administrative Tools) for messages from the Service Control Manager.

 Check the web service log: %INSTALL_DIR%\tap.tcl.err

Problems accessing the service (networking & TCP/IP connectivity):

 Use the Service Control Panel or SC.EXE utility to check that the service is running.

 Check the web service logs for errors; the log will also indicate the TCP/IP address
and port at which the service is listening.

 Check that your system is in fact listening for connections on the expected TCP/IP

address and port by using the command netstat.exe –an

 Check the firewall settings in Control Panel  Windows Firewall.

http://localhost/

Copyright © 2013-2023

PR-D2-1112 rev 5.22.2 Page 5 of 39

 If the web service is running on another computer, use the ping.exe,

telnet.exe and tracert.exe utilities to ensure that basic TCP/IP

communication exists between the computers.

ping.exe and tracert.exe are built for network diagnostics but use the ICMP

protocol and may be fooled by firewalls. If you can use telnet.exe to connect to

the web server’s address and port then the network and service are behaving
correctly.

Problems accessing the Hardware Security Module (HSM) or performing cryptographic
operations:

 Use the StsClosedVending UI to diagnose the problem.

Problems using the web services:

 Refer to 3.6 Debugging.

2.7 Upgrading the software

Upgrades follow the same procedure as Installation. You must install an upgrade into the
same folder as the original installation (the setup application will detect the correct folder).

2.8 Uninstalling the software

An Uninstall shortcut is provided in the Start menu under All Programs  Prism 

TsmWeb. You can also uninstall the software via Control Panel  Add or Remove Programs.

 Some files – such as configuration and logs – will not be removed by the uninstall

application. You can manually remove them from the %INSTALL_DIR% if required.

Copyright © 2013-2023

PR-D2-1112 rev 5.22.2 Page 6 of 39

3. Application Programming Interface (API)

3.1 Overview

Prism’s web service APIs are designed to follow the REST
1
 model:

 Where possible the services are stateless and resource oriented.

 Some services perform computations rather than resource manipulation and are
exposed as REST-like remote procedure calls. Such services may only be
accessed via the HTTP POST method.

 The HTTP GET, HEAD, PUT and DELETE methods are always idempotent (side-
effect free). POST is seldom (if ever) idempotent.

 Some services support queries
2
 (parameters). The query string is appended to the

URL for a GET request, or included in the request body for POST. The query string
is built and encoded according to the HTTP specification.

o XML, SOAP, or JSON encoded requests are not supported.

 The resource or output obtained from a service may be retrieved in different formats
or representations. The client indicates the desired representation in the URL.

o Web services meant for human consumption are generally only available in
HTML format.

o Web services meant for automation are generally available as INI, TSV or
XML.

 The result of processing (success or failure) is indicated by HTTP Status Codes.

o A 200 “OK” status indicates that the service executed successfully, and the
body of the response will contain the requested resource or service output.

o All other codes have meanings as defined in the HTTP specification.

3.2 Terms, definitions and abbreviations

The table below describes the abbreviations used throughout this document.

BDT BaseDate

CC CountryCode

CRC CyclicRedundancyCode

DAC DeviceAuthenticationCode

DOE DateOfExpiry

DRN DecoderReferenceNumber (meter number)

DSN DecoderSerialNumber

DUTK DecoderUniqueTransferKey

EA EncryptionAlgorithm

FAC FirmwareAuthenticationCode

IAIN IndividualAccountIdentificationNumber

1
 Representational State Transfer: http://en.wikipedia.org/wiki/Representational_State_Transfer.

2
 See http://en.wikipedia.org/wiki/Query_string.

http://en.wikipedia.org/wiki/Representational_State_Transfer
http://en.wikipedia.org/wiki/Query_string

Copyright © 2013-2023

PR-D2-1112 rev 5.22.2 Page 7 of 39

ID Identification; Identifier

IIN IssuerIdentificationNumber

ISO International Standards Organisation

ISO BIN Replaced by IIN

KCT KeyChangeToken

KEK KeyExchangeKey

KEN KeyExpiryNumber

KLF KeyLoadFile

KRN KeyRevisionNumber

KT KeyType

LRC LongitudinalRedundancyCheck

Mfr Manufacturer

MPL MaximumPowerLimit

MPPUL MaximumPhasePowerUnbalanceLimit

PAN PrimaryAccountNumber

POS PointOfSale

RND RandomNumber

RO Roll over

SG SupplyGroup

SGC SupplyGroupCode

SHA Secure Hash Algorithm

STA Standard Transfer Algorithm

STS Standard Transfer Specification

STSA Standard Transfer Specification Association

TCDU TokenCarrierDataUnit

TCT TokenCarrierType

TDEA Triple Data Encryption Algorithm

TI TariffIndex

TID TokenIdentifier

UC UtilityCode

VCDK VendingCommonKey

VDDK VendingDefaultKey

VK VendingKey

VUDK VendingUniqueKey

Copyright © 2013-2023

PR-D2-1112 rev 5.22.2 Page 8 of 39

3.3 Access control and authentication

The current generation web services are provided as an integration technology only – much
like a DLL, COM object, or Prism’s Conductor service – and do not provide access control or
authentication mechanisms.

The services are meant to run on a secured network or on localhost (127.0.0.1), and should
never be directly accessible to end-users.

3.4 Status codes

The status codes that may be returned by a Prism web service are consistent with the HTTP
specification

3
. The table below contains commonly encountered codes and information on

the probably cause of the code.

In the case of client errors (codes 4xx) or server errors (codes 5xx) the response body will
include more specific information on the cause or nature of the error.

Status
Code

Meaning Probable cause

200 OK The operation completed successfully.

302 Found

also known as

Moved Temporarily

The client should access the resource using a different

URL (the correct URL will be in the Location: header).

400 Bad Request The resource or service was found, but the request is
inappropriate. Common causes include:

 Missing or extra query parameters

 Invalid or out-of-range parameter values

 Trailing path information in the URL

404 Not Found No document, resource or service was found at the
requested URL.

405 Method Not Allowed The resource or service was found, but does not support
the requested method of access (HTTP GET, POST, etc.)

415 Unsupported Media
Type

The requested representation is not recognised, or is not
compatible with the resource or service.

500 Internal Server Error A runtime exception has occurred and the operation could
not complete.

501 Not Implemented The requested service is not implemented in this version
of the software.

503 Service Unavailable The requested resource or service is temporarily
unavailable. This is usually caused by a dependency
such as a database, network file system, or coprocessor
being offline.

3.5 Output formats (representations)

Web services meant for automation may produce their outputs in one of several
representations. Most services support the following representations:

3.5.1 INI (default)

INI format consists of lines of key=value pairs, like a Windows INI file.

3
 HTTP status codes: http://en.wikipedia.org/wiki/List_of_HTTP_status_codes.

http://en.wikipedia.org/wiki/List_of_HTTP_status_codes

Copyright © 2013-2023

PR-D2-1112 rev 5.22.2 Page 9 of 39

 The key is strictly alphanumeric.

 The value may contain any character that may be represented in the charset of the
HTTP response except the line delimiter.

 The line delimiter is ASCII character LF = 10 (\n).

Example:

token=67701832116585202773

tokenHex=3AB8D399C40318455

txCredit=974

3.5.2 TSV

Tab-Separated Value format is a list of alternating keys and values, delimited by the ASCII
character TAB = 8 (\t).

 The keys are strictly alphanumeric.

 The values may contain any character that may be represented in the charset of the
HTTP response except the TAB delimiter and the ASCII character LF = 10 (\n).

 A TSV response is contained within a single line; this format is thus not suitable for
large responses.

Example (the TAB delimiter is indicated by )

token21701356005869838267tokenHex12D2AB44F02295FBBtxCredit973

3.5.3 XML

The XML format is specified
4
 by the W3C. Responses generated by Prism’s web services

use a subset of XML 1.0.

 No processing instructions, comments, or CDATA sections are used.

 Namespaces are not used, and elements (tag) may not have attributes.

 Empty tags are not used – an empty value will have an open and close tag.

 No DTD or schema is used – the meaning of the XML data is defined by the web
service API specification.

 The entire response is contained with a <response> element.

 Each output field will be represented as an element within the <response>. The

element name (tag) indicates the name of the output field. The content of the
element is the value of the field.

 Encoding is not relevant to this API: all output values are represented as
alphanumeric characters and will not require encoding to be included in an XML
document.

Example:

<?xml version='1.0' encoding='ISO-8859-1'?>

<response>

 <token>60977247870879488672</token>

 <tokenHex>34E3AB3DE04B75AA0</tokenHex>

 <txCredit>972</txCredit>

</response>

3.6 Debugging

It is common to encounter problems during the development and integration of software
components. In the Web Services environment these problems often relate to invalid data

4
 Extensible Markup Language (XML): http://www.w3.org/XML/Core/.

http://www.w3.org/XML/Core/

Copyright © 2013-2023

PR-D2-1112 rev 5.22.2 Page 10 of 39

encodings, caching, redirection or bad URLs. Such integration problems may be difficult to
debug with a traditional IDE.

Prism has found the following tools, techniques and information sources to be helpful:

 Check the web service logs (see also 2.6 Troubleshooting).

%INSTALL_DIR%\tap.tcl.err

 For networking and TCP/IP connectivity problems, refer to 2.6 Troubleshooting.

 For HSM and cryptographic subsystem problems, refer to 2.6 Troubleshooting.

 For web service testing and integration issues we recommend the cURL utility, an

Open Source tool available from http://curl.haxx.se/. curl runs on many platforms

including Windows, Linux, Mac OS/X, Solaris and HP-UX.

curl allows you to access web services from the command line, controlling the

HTTP method and headers, URL, and request parameters. The full HTTP response
including the resource code, headers and body can be displayed to give full visibility
of the web service protocol.

http://curl.haxx.se/

Copyright © 2013-2023

PR-D2-1112 rev 5.22.2 Page 11 of 39

3.7 Tariff File Format

The tariff database can be updated by importing a tariff file. A tariff file is a text file containing
records for each supply group code given a particular tariff index, subclass and active date.
Each record consists of comma separated values where the first value of the record is a prefix
describing the tariff record structure. Currently only “Tariff1” is supported by the system.

All fields are in ASCII for the length indicated. Representation is defined as follows:

a alphabetic

n numeric

an alpha-numeric

ah alpha-hex

ans alpha-numeric, special

Fields:

Prefix an

Supply group code n(6)

Tariff index n(2)

Subclass n(2)

Date active n(10)

Tariff n(1-*)

Field Descriptions

 Prefix

The tariff record type for this entry. Currently only “Tariff1” is supported.

 Supply group code

The supply group code the tariff applies to

 Tariff index

The tariff index the tariff applies to for the given supply group. A tariff index less than
10 must be space padded with a zero

 Subclass

The subclass the tariff applies to given the supply group and tariff index. E.g. water or
electricity. Left padded with zero for a subclass less than 10

 Date Active

The date from which this tariff value becomes active for that supply group.

 Tariff

The tariff value in cents per 100Wh

Example:

Comment line

Tariff1,123456,01,00,1382004571,50

Tariff1,123456,01,01,1330000000,90

Tariff1,888888,02,00,1382004571,30

Copyright © 2013-2023

PR-D2-1112 rev 5.22.2 Page 12 of 39

4. PrismVend API

The PrismVend API provides services for STS token vending.

4.1 API services

 Vend Credit Token

 Vend Meter-Specific Engineering Token

 Query Transaction Counter

4.2 Legacy API services

Legacy API services are provided for compatibility with Prism’s STSClosedVending product
(v3.x). Do not use these services for new development.

 Calculate Watt-Hours (LEGACY)

4.3 Meter Management services

Meter Management services retrieve or set meter configuration, and can be used to issue Key
Change Tokens.

 Overview

 Get Meter Information

 Set Meter Information

 Update Meter Key

 Engineering Key Change

Copyright © 2013-2023

PR-D2-1112 rev 5.22.2 Page 13 of 39

4.4 Vend Credit Token (VendCredit2)

Generates an IEC 62055-41 Class 0 “Credit Transfer Token” to transfer credit for any service
type (determined by subclass) to a given meter.

URL http://host/stsvend/VendCredit2.format

v5.22.1: VendCredit2 is the preferred interface; VendCredit remainds for
backwards compatibility

Formats tsv (default), ini, xml

HTTP method(s) POST

Input
Parameters
(Required)

meterId (required)

Identifies the meter that will consume the token.

Format: A printable ASCII string in any of the following formats:

 For blind vending (to unregistered meters):

o 35 digit IDRecord (MeterPAN, DOE, TCT, EA, SGC, TI, KRN)

o Record2 (MagStripe) format with or without sentinels and LRC

 For vending to registered meters:

o 11 digit DecoderReferenceNumber (DRN) (containing manufacturer
code, device SN, Luhn/DRNCheckDigit)

o 16 digit PAN (as for 17 digit PAN but excludes first digit of the IIN)

o 17 digit PAN (as for 18 digit PAN but excludes trailing
Luhn/PANCheckDigit)

o 18 digit PAN (IIN, country code, DSN, Luhn/PANCheckDigit)

The Security Module in the vending server must have the Vending Key for
the Supply Group Code on which the meter is registered.

subclass (required)

Gives the subclass of the STS Class 0 token, which determines the
resource represented by the token (electricity, water, gas, ...).

Format: A decimal integer in the range -1 to 15.

If -1 is specified, the CDU will do a database lookup to determine the
resource type of the meter that has been registered on the system.

The following values are accepted:

 -1 = Auto

 0 = Electricity

 1 = Water

 2-15 = Reserved

value (required)

The desired currency value of the token, net of fees, expressed in “cents”
(0.01 base currency units). To vend R50.01 you must supply value=5001.

This value will be converted into a number of resource units at the ruling
Tariff (for the meter's installed location and configuration), then encoded
into an STS TransferAmount per the STS standard. The encoding places
an upper bound of 18,201,624 on the number of units.

Format: A floating point number (up to 3 digits precision); must be greater
than or equal to 0 for subclasses 0-3.

v3.29.0: value is not net of fees, specification to be revisited.

Copyright © 2013-2023

PR-D2-1112 rev 5.22.2 Page 14 of 39

messageId (optional, default empty)

A unique transaction identifier.

MessageId may be used by clients to safely resubmit a transaction when
the outcome of a previous attempted submission is unknown. Other uses
of messageId include finding transactions for reprinting, reporting,
diagnostics or fraud investigation.

A messageId is optional but strongly recommended. If omitted (or given as
an empty string) then a unique messageId will be assigned by the server.
Any other value must be unique per transaction; the transaction will be
rejected as a duplicate if an identifier is reused.

We recommend that the messageId be constructed with the originating
client or terminal ID as a prefix, and a transaction counter or timestamp as
the suffix. You may want to include the username or the authenticated
operator. We also recommend that the suffix has an ASCII sort order
equivalent to the transaction order. For example we could use a POS
identifier, an employee number, and an ISO 8601 point-in-time:
"POS.23.4-emp0139-20130818T154022Z".

Format: A printable ASCII string string containing only alphanumeric
characters or underscore '_', hyphen '-', period '.' or comma ','; with a
maximum length of 40 characters (equivalently: the value must match the
Perl-Compatible regular expression '^[a-zA-Z0-9_\-.,]{0,40}$').

vendType (optional, default 1)

Deprecated; use vendType=1.

In legacy TsmWeb-STS software vendType=0 requested a “Trial” vend;
this is no longer supported by PrismVend (for STS6 SM). Instead we
recommend using Prism’s Test KMS to load CTS test keys into your SM.

Format: A decimal integer greater than 0.

Status codes 200, 400, 402, 405, 415, 500, 503

Output The output will include the following fields:

 idRecord 35 digit IDRecord per IEC 62055-41 (contains MeterPAN,
DOE, TCT, EA, SGC, TI, KRN). This indicates the meter number and
configuration that will accept this token (it may not indicate the meter’s
configuration after entering the tokens, for example if this response
includes a Key Change Token Set; see the `toIdRecord` field).

 subclass As for input.

 description A human-readable description of the token type.

 vendTimeUnix The date & time of the vend given as a Unix
timestamp (seconds elapsed since the Epoch, 1970-01-01 00:00)
expressed as a decimal integer.

 unitsActual The actual number of transfer units issued, as a floating
point number. The scale/measure is given by unitName.

 unitName The name of the transfer unit for the subclass, as a
printable ASCII string (e.g. “kWh”, “kL”).

 valueActual The monetary value of the credit represented by the
token (net of fees), given in 0.01 base currency units, expressed as a
floating point number (up to 3 decimal places precision).

o This field typically equal to the input value, but may be slightly
larger due to rounding (the STS standard requires all rounding
to be in the customer’s favour).

Copyright © 2013-2023

PR-D2-1112 rev 5.22.2 Page 15 of 39

o valueActual = tariff × unitsActual × 100

 Tariff The applicable tariff (base currency units per resource unit
[given by unitName]), expressed as a floating point number.

 tillslipSv (since v5.15) Detail of how the input value was allocated, as
a pipe (‘|’) separated list of description and amount.

 numTokens (since v5.22.1) is a decimal integer giving the number of
tokens included in this response. A single “Vend Credit” call may
return multiple tokens; in particular it may include a Key Change
Token Set.

 toIdRecord (since v5.22.1) is empty unless this response includes a
Key Change Token Set, in which case it is the new IDRECORD for
the meter (indicating an update SGC and/or KRN and/or TI).

 tokenDec_1 .. tokenDec_N (since v5.22.1) The generated tokens as
numTokens separate fields (numbered 1 to N) of 20 decimal digits
each, suitable for printing on a POS slip for entry into a meter via a
keypad.

 description_1 .. description_N (since v5.22.1) The description of
each token.

v3.29.0: valueActual and tariff changed from “decimal integer” to “floating
point”

v4.23.8: unitsActual changed from “decimal integer” to “floating point”.

v5.22.1: VendCredit2 gets new fields numTokens and toIdRecord; and the
tokenDec field is replaced by tokenDec_1 .. tokenDec_N

4.4.1 Example of use #1 – INI response (with HTTP headers
shown)

Request

curl -i http://localhost:8080/stsvend/VendCredit2.ini -d subclass=0 -d

meterId=00000100000000008200000107123456011 -d value=100

Response

HTTP/1.1 200 OK

Date: Wed, 11 Oct 2023 14:33:57 GMT

Server: Prism WSHOST

content-length: 394

content-type: text/plain; charset=utf-8

pragma: no-cache

vary: Accept-Encoding

idRecord=00000100000000008200000107123456011

tariff=1.30000

subclass=0

description=Sale - Credit:Electricity

vendTimeUnix=1697034780

unitsActual=0.8

unitName=kWh

valueActual=104.00

tillslipSv=Payment|1.00|Credit:Electricity;0.8 kWh @ 1.30000|-1.0400|Rounding

(discount)|0.0400|= Balance out|0.0000

numTokens=1

toIdRecord=

tokenDec_1=27985770301746300931

description_1=Sale - Credit:Electricity

Copyright © 2013-2023

PR-D2-1112 rev 5.22.2 Page 16 of 39

Copyright © 2013-2023

PR-D2-1112 rev 5.22.2 Page 17 of 39

4.4.2 Vend Credit Token (old)

Generates an IEC 62055-41 Class 0 “Credit Transfer Token” to transfer credit for any service
type (determined by subclass) to a given meter.

URL http://host/stsvend/VendCredit.format

Description As for VendCredit2 (section 4.4), except:

 VendCredit2 is the newer, preferred interface.

 VendCredit will report an error “LatestKRNEx - Update Meter Key”
if the meter has a Queued Key Change Token, because it can
only return a single token.

 VendCredit does not have `numTokens` to `toIdRecord` response
fields.

 VendCredit can only return a single token, and does so in the
`tokenDec` and `tokenHex` fields (it does not have `tokenDec_1`
.. `tokenDec_N` or `description_1` .. `description_N` fields).

 Example of use #1 – XML response

Request

curl http://localhost:8080/stsvend/VendCredit.xml -d subclass=0 -d

meterId=600727000000000009===0207123456011 -d value=50

Response

<?xml version=’1.0’ encoding=’utf-8’?>

<response><idRecord>60072700000000000900000207123456011</idRecord>

<tariff>11.0</tariff>

<subclass>0</subclass>

<description>Sale – Credit:Electricity</description>

<vendTimeUnix>1378384620</vendTimeUnix>

<unitsActual>0.5</unitsActual>

<unitName>kWh</unitName>

<valueActual>55</valueActual>

<tokenHex>1111111111111111</tokenHex>

<tokenDec>22222222222222222222</tokenDec>

</response>

http://host/stsvend/VendCredit.format

Copyright © 2013-2023

PR-D2-1112 rev 5.22.2 Page 18 of 39

 Example of use #2 – INI response (with HTTP headers shown)

Request

curl -i http://localhost:8080/stsvend/VendCredit.ini -d subclass=0 -d

meterId=600727000000000009===0207123456011 -d value=100

Response

HTTP/1.1 200 OK

Date: Thu, 05 Sep 2013 12:38:06 GMT

Server: Prism WSHOST

set-cookie: nsssession=52287b2e.fK_S9YptbHbIhUB8zz5jEQ; Path=/

content-length: 233

content-type: text/plain; charset=utf-8

cache-control: no-store, no-cache, must-revalidate, max-age=0, post-check=0, pre-

check=0

expires: Sun, 01 Jul 2005 00:00:00 GMT

pragma: no-cache

vary: Accept-Encoding

idRecord=60072700000000000900000207123456011

tariff=11.0

subclass=0

description=Sale – Credit:Electricity

vendTimeUnix=1378384860

unitsActual=1.0

unitName=kWh

valueActual=110

tokenHex=1111111111111111

tokenDec=22222222222222222222

Copyright © 2013-2023

PR-D2-1112 rev 5.22.2 Page 19 of 39

4.5 Vend Meter-Specific Engineering Token

Generates an IEC 62055-41 Class 2 “Meter-specific Engineering Token” to issue a
management instruction (determined by subclass) to a given meter.

URL http://host/stsvend/VendMse.format

Formats tsv (default), ini, xml

HTTP method(s) POST

Input
Parameters
(Required)

meterId (required) As for Vend Credit Token.

Subclass (required)

Gives the subclass of the STS Class 2 token, which determines the
management instruction represented by the token.

Sub
class

Management function Supp range

0 SetMaximumPowerLimit 0 to 18,201,624

1 ClearCredit 0 to 65535

5 ClearTamperCondition 0

6 SetMaximumPhasePowerUnbalanceLimit 0 to 18,201,624

7 SetWaterMeterFactor 0 to 65535

Format: A decimal integer in the range 0 to 15 (excluding 3 or 4, which are
reserved for Key Change).

Supp (optional, default 0)

Supplementary data value to be encoded into the token. The
interpretation of this value is subclass-specific; refer to IEC 62055-41.

Format: A decimal integer; the range is subclass-specific.

messageId (optional, default empty) As for Vend Credit Token.

Status codes 200, 400, 402, 405, 415, 500, 503

Output The output will include the following fields:

 idRecord As for Vend Credit Token.

 subclass As for input.

 description A human-readable description of the token type.

 vendTimeUnix As for Vend Credit Token.

 unitsActual The actual number of transfer units issued, as a decimal
integer.

 unitName The name of the transfer unit for the subclass, as a
printable ASCII string (e.g. subclass 0 units are 100Wh so unitName
is “hWh”).

 tokenDec The generated token as 20 decimal digits, suitable for
printing on a POS slip for entry into a meter via a keypad.

 tokenHex The generated token as 17 hexadecimal characters,
suitable for transfer to a magnetic token carrier.

http://host/stsvend/VendMse.format

Copyright © 2013-2023

PR-D2-1112 rev 5.22.2 Page 20 of 39

4.6 Query Transaction Counter

Returns the number of transactions left in the module.

URL http://host/stsvend/QueryTx.format

Formats tsv, ini (default), xml

HTTP method(s) GET

Input
Parameters
(Required)

None

Status codes 200, 400, 405, 415, 500, 503

Output txCredit (required)

The quantity of transactions still available on the module. Given as a
positive integer.

4.6.1 Example of use #1 – XML response

Request

curl http://localhost:5081/stsvend/QueryTx.xml

Response

<?xml version=’1.0’ encoding=’ISO-8859-1’?>

<response>

 <txCredit>10000</priceExact>

</response>

4.6.2 Example of use #2 – TSV response

Request

curl http://localhost:5081/stsvend/QueryTx.tsv

Response

txCredit 10000

4.6.3 Example of use #3 – INI response (format not specified)

Request

curl http://localhost:5081/stsvend/QueryTx

Response

txCredit=10000

http://host/stsvend/QueryTx.format

Copyright © 2013-2023

PR-D2-1112 rev 5.22.2 Page 21 of 39

4.7 Calculate Watt-Hours (LEGACY)

Computes the quantity of electricity (hundred-Watt hours) that may be purchased for a given
price.

URL http://host/stsvend/CalcWh.format

Formats tsv, ini (default), xml

HTTP method(s) POST

Input
Parameters
(Required)

price (required)

The price that a customer will pay for the token, as a floating-point value in
a standard currency unit (e.g. Rands). The decimal separator is a period
(.).

For example, “1.50” indicates one Rand and fifty cents.

Tariff (required)

The price for one unit of electricity (100 Watt-hours), as a floating-point
value in the same currency unit and format as price.

For example, “1.10” indicates one Rand and ten cents per hundred-Watt-
hour.

vendorFee (required)

A per-vend fee that is charged by the vendor, to be subtracted from the
price before applying the tariff. Given as a floating-point value in the same
currency unit and format as price.

For example, “0.75” indicates a fee of 75 cents.

Status codes 200, 400, 402, 405, 415, 500, 503

Output hwh (required)

The quantity of electrical units (hundred-Watt-hours) that may be
purchased for the given price, tariff and fee. Given as a positive integer.

priceExact (required)

The exact price that should be paid for the quantity of electrical units
indicated by hwh. PriceExact will always be less than or equal to price,
and is given in the same currency unit and format as price.

Since vending must occur in discrete units, each costing the amount given
by tariff, the input price will seldom correspond exactly to a whole hwh
quantity; that is, there will be a rounding error.

priceCeil (optional)

If priceExact is not equal to price, then priceCeil will indicate the price
for (hwh + 1) electrical units; that is, the ceiling value with respect to the
tariff.

4.7.1 Example of use #1 – XML response

Request

curl http://localhost:5081/stsvend/CalcWh.xml -d price=100 -d tariff=2 -d vendorFee=0

Response

<?xml version=’1.0’ encoding=’ISO-8859-1’?>

http://host/stsvend/CalcWh.format

Copyright © 2013-2023

PR-D2-1112 rev 5.22.2 Page 22 of 39

<response>

 <priceExact>100.00</priceExact>

 <hwh>500</hwh>

 <priceCeil>100.00</priceCeil>

</response>

4.7.2 Example of use #2 – TSV response

Request

curl http://localhost:5081/stsvend/CalcWh.tsv -d price=1000 -d tariff=1 -d

vendorFee=0.5

Response

priceExact 10000.00 hwh 99995 priceCeil 10000.00

4.7.3 Example of use #3 – INI response (format not specified)

Request

curl http://localhost:5081/stsvend/CalcWh -d price=45.5 -d tariff=1 -d vendorFee=0.75

Response

priceExact=45.45

hwh=447

priceCeil=45.55

Copyright © 2013-2023

PR-D2-1112 rev 5.22.2 Page 23 of 39

4.8 Meter Management API: Overview

In an STS system each meter has an identity (DRN/PAN), a configuration (SGC, KRN, TI),
and a corresponding Meter Key.

The meter’s identity is fixed for the lifetime of the meter; but the meter’s configuration and the
Meter Key can change over time, in particular by generating a Key Change Token Set and
entering these tokens into the meter.

The fact that a meter’s configuration can change, and that the change is split into a token
generation step and a token loading step, means that there are always at least 3 possible
things that a “meter configuration” could refer to:

1. The actual SGC, KRN, TI and Key of the meter. We call this the “actual

configuration”.

2. The SGC, KRN, and TI recorded for the meter in the Vending System. We call this

the “captured configuration”.

3. The SGC, KRN, and TI that the meter should be configured on according to the

system management policies. We call this the “intended configuration”.

The Vending System also distinguishes between “Registered” and “Unregistered” (also called
“Seen”) meters:

 If a meter is “Registered” then the Vending System asserts that its view of the meter

configuration (SGC, KRN, TI) is accurate. Attempts to “blind vend” to the meter using

a different SGC/KRN/TI will fail.

 If a meter is “Unregistered” (also called “Seen”) then the Vending System will trust the

SGC/KRN/TI provided in a “blind vend”, issue tokens using that configuration, and

store it to the database for later use.

Understanding that there are different views of “meter configuration”, and how blind vending
to an “Unregistered” meter can change the meter configuration stored in the database, is key
to understanding how to manage meter configuration in the Vending System and in the meter.

4.8.1 Meter Record

A meter record in the PrismVend database includes the following fields (read-only fields
cannot be modified using “Set Meter Information”, but may be managed via other API
functions).

Field Description

drn (primary key) DecoderReferenceNumber also known as the Meter Number

sgc Current SupplyGroupCode of the meter

krn Current KeyRevisionNumber of the meter

ti Current TariffIndex of the meter

ea Meter’s EncryptionAlgorithm

tct Meter’s TokenCarrierType

resType Meter’s resource type (i.e. water, electricity, gas, etc.) stored as the
applicable subclass of a class=0 (Credit) token

name A name to associate with this meter, e.g. an address or contact person

organisation An organisation name to associate with this meter

balanceCf The Balance Carried Forward from the most recent Credit Token issue.

meterPan (read-only) The 18-digit PrimaryAccountNumber constructed from the drn.

idRecord (read-only) The IDRECORD constructed from the meterPan, sgc, krn, ti,

Copyright © 2013-2023

PR-D2-1112 rev 5.22.2 Page 24 of 39

ea, and tct.

isRegistered (read-only) A meter `isRegistered` if its configuration has been entered via
the WebUI or using “Set Meter Information”. A meter will not be registered
if its configuration has only been recorded via a “blind vend”. A meter
configuration must be registered before a different intended configuration
can be recorded (i.e. before a KCT can be queued).

queuedKct (read-only) Indicates the intended configuration (SGC, KRN, TI) of a meter,
which is different to the meter’s current configuration. When there is a
queuedKct various token issue operations will include a Key Change
Token to re-configure the meter to this intended configuration.

docId (read-only) Identifies this Meter Record and revision. The docId must be
used with Set Meter Information to update an existing meter record.

channelFee (read-only) Channel Fee applicable to vending to this meter (derived from
global settings; this value is not meter-specific).

tariffRate (read-only) Tariff Rate applicable to vending to this meter (derived from
tariff settings; this value is not meter-specific).

4.9 Get Meter Information
(GET/stsvend/Meter/drnOrPan.format)

Retrieves meter information from the database.

Use cases:

 Get meter configuration (and other information) for display outside the PrismVend

WebUI.

 Get information for subsequent update via “Set Meter Information”

Prerequisites:

 Meter must exist in database

Description:

Retrieves meter configuration and other information from the PrismVend database.
The same information can be seen in the PrismVend WebUI. Information includes the
meter configuration, descriptive names, tariff, and applicable channel fees.

Required inputs:

 drnOrPan: Meter DRN or PAN

Optional inputs:

 format: tsv|ini|xml, default ini

Outputs:

 HTTP status code 415 "Unsupported Media Type": bad “format” input

 HTTP status code 400 "Bad Request": bad input (e.g. invalid drnOrPan)

 HTTP status code 404 "Not Found": meter could not be found in database

 HTTP status code 500 “Internal Server Error”: unhandled exception

 HTTP status code 200 plus TSV/INI/XML body with meter record fields as described

in the Overview.

Copyright © 2013-2023

PR-D2-1112 rev 5.22.2 Page 25 of 39

4.10 Set Meter Information
(POST/stsvend/Meter/drnOrPan.format)

Creates or updates a meter record in the database.

Use cases:

 Correct the captured configuration (in the database) to match the actual configuration

(of the meter).

 Queue a Key Change Token for delivery to a meter along with the next Credit or MSE

token, by setting an intended configuration (in the database) that is different to the

captured configuration (in the database).

 Integrate with a front-end UI (other than PrismVend Web UI).

 Automate meter changes via scripts or as part of a batch operation.

 Change meter configuration in database to match the actual meter

Prerequisites:

 For an existing meter: use “Get Meter Information” first to get the current `docId`.

Description:

Creates a new meter record in the database (capturing the meter’s configuration), or
updates the configuration (and/or other information) of an existing meter record in the
database.

Note:

 Changing the meter to any well-formed SGC, KRN, and TI will succeed, even if the

Vending Key is not available to the Vending System, or the SGC/KRN/TI violate

policies. A subsequent attempt to issue a Key Change Token will apply the relevant

policies (if any), and will fail if the Vending Key is not available.

Required inputs:

 drnOrPan: Meter DRN or PAN

 docId: an optimistic lock value which must be `new` for a new meter record, or the

`docId` value returned by “Get Meter Information” for an existing meter record.

Optional inputs:

 format: tsv|ini|xml; default ini

 resType, sgc, krn, ti: Required for a new meter, optional for an existing meter.

 messageId, ea, tct, name, organisation, balanceCf: Always optional.

 newSgcKrnTi: capture|queuekct. Default is `capture` which means the SGC/KRN/TI is

stored to the database as a correction to the existing record (i.e. to make the

captured configuration match the actual meter configuration). `queuekct` will only

work on a meter that is already registered, and sets the intended configuration, which

(if different to the captured configuration) will cause a Key Change Token to be

issued as part of the next Credit or MSE vend (changing the meter from the captured

configuration to the intended configuration).

 All other fields names (including other fields returned by “Get Meter Information” like

idRecord, isSeen, isRegistered, channelFee, tariffRate, etc.) are ignored.

Outputs:

 HTTP status code 415 "Unsupported Media Type": bad “format” input

 HTTP status code 400 "Bad Request": a required input field is missing, or any input

field has an invalid value

 HTTP status code 404 "Not Found": meter could not be found in database

 HTTP status code 409 "Meter Conflict": wrong docId value (maybe because the

document has changed since you retrieved the docId value)

Copyright © 2013-2023

PR-D2-1112 rev 5.22.2 Page 26 of 39

 HTTP status code 500 “Internal Server Error”: unhandled exception

 HTTP status code 200 plus TSV/INI/XML body as for Get Meter Information.

4.11 Update Meter Key
(POST/stsvend/UpdateMeterKey.format)

Issues a Key Change Token Set to change the meter’s configuration to match the system.

Use cases:

 Meter configuration does not match system; issue KCT to change meter to match the

system.

 System has queued KCT (non-empty newIdRecord), issue KCT to change meter to

new configuration.

 System has received new KRN for SGC or new KEN for VK, issue KCT to change

meter KRN or KEN (CTS auto-KCT scenario).

Prerequisites:

 Meter must exist in database

Description:

This function implements the SANS 1524-6-10 “Update Meter Key” process: it issues a KCT
from the input SGC/KRN/TI values, to the “intended” meter configuration stored in the
database (i.e. queuekct), or to the “current” configuration if there is no “intended”
configuration.

Notes:

 The operation may fail if the VendingKey for the destination SGC & KRN is not

available.

 Failing to enter a KCT (issued by this endpoint) into a Meter will cause the meter’s

actual configuration to different from the system’s current configuration.

 The actual meter configuration (fromSgc, fromKrn, fromTi) is usually taken from the

receipt of a token that has been accepted by the meter. If the system’s current meter

record is accurate, this can be retrieved using `GET /Meter`.

 By default a KCT is only issued if the meter needs an updated key, so you can use

UpdateMeterKey to determine if an update is required so long as you are prepared to

receive a KCT and enter it into the meter. To determine whether an update is

available without issuing a KCT you can use `GET /Meter`, then an update if required

if (1) the actual meter configuration differs from the idRecord or (2) there is a non-

empty queuedKct.

Required inputs:

 meterId: Meter DRN or PAN (IDRecord not accepted)

 fromSgc, fromKrn, fromTi: configuration of the physical meter

Optional inputs:

 format: tsv|ini|xml; default ini

 messageId

 skipIfSameMeterKey (default 1): By default a KCT will not be generated if the given

meter configuration already matches the system; set to 0 to force a KCT to be issued

in this circumstance.

Outputs:

 HTTP status code 200 plus TSV/INI/XML body with the following fields:

o description (string): Human-readable description of the operation

Copyright © 2013-2023

PR-D2-1112 rev 5.22.2 Page 27 of 39

o vendTimeUnix (int): Date/time of issue as a Unixtime (seconds since 1970-

01-01)

o fromIdRecord (IDRECORD): Source/from configuration, which will match the

supplied meterId, fromSgc, fromKrn, and fromTi.

o toIdRecord (IDRECORD): Destination/to configuration, which will match the

system.

o isRegistered

o numTokens (int): Number of tokens

o tokenDec_1, tokenDec_2, … tokenDec_{numTokens} (20 digits): 2 or more

tokens (as separate fields) that make up the Key Change Token Set.

o description_1, description_2, … description_{numTokens} (string): For each

`tokenDec_{N}` there will be a matching `description_{N}` that describes the

token (can be used in receipt printing).

 HTTP status code 204 “No Content”: meter does not require an updated key (source

and destination configurations are the same) so no KCT was issued

 HTTP status code 400 "Bad Request": a required input field is missing, or any input

field has an invalid value

 HTTP status code 402 " Payment Required": insufficient transactions in SM to

complete the operation

 HTTP status code 415 "Unsupported Media Type": bad “format” input

 HTTP status code 422 " Unprocessable Entity ": well-formed request but could not be

processed, most likely because the meter could not be found in database

 HTTP status code 500 “Internal Server Error”: unhandled exception

4.12 Engineering Key Change
(POST/stsvend/EngineeringKeyChange)

Change the meter’s intended configuration on the system, then issue a KCT to change the
meter’s actual configuration to match the system.

Use cases:

 For technicians when the meter is in database, but neither meter nor database have
the correct configuration. This operation first changes the meter record in the
database to the “to” values, then issues a Key Change Token set from the “from”
values to the “to” values, thus bringing both the meter and system to the correct
configuration.

 For technicians when the meter is not in database, and needs to be key-changed and
added to the database. This operation adds to meter to the database with the “to”
configuration, then issues a Key Change Token set from the “from” values to the “to”
values.

Prerequisites:

 None

Description:

This function implements the SANS 1524-6-10 “Engineering Key Change” process,
but with relaxed limits on the destination configuration. First the input toSgc/toKrn/toTi
values will be used to set the intended configuration of the meter in the database (to
the extent permitted by policies & configurations); then a KCT is issued from the input
fromSgc/fromKrn/fromTi values to the intended configuration. The current and/or
intended meter configuration that existed in the database before this function was
called is ignored, except to provide EA and TCT values if those were not supplied as
function parameters.

Once this KCT has been loaded into the meter, the meter’s actual configuration
should be in sync with the Vending System.

Copyright © 2013-2023

PR-D2-1112 rev 5.22.2 Page 28 of 39

This function is the equivalent of using `POST /Meter` to change the current
configuration, then `POST /UpdateMeterKey` to issue a KCT from the meter’s actual
configuration to the (new) configuration on the system.

Notes:

 Use this function when a KCT must be sent to the meter and the configuration in the

database must be changed.

 The actual meter configuration (fromSgc, fromKrn, fromTi) is usually taken from the

receipt of a token that has been accepted by the meter. If the system’s current meter

record is accurate, this can be retrieved using `GET /Meter`.

 Optional parameters EA and TCT are used in preference to those stored in the

database, will update the database values for EA & TCT for this meter, and are

required if the meter is not in the database.

 Policies/rules/configurations may override the toSgc and/or toKrn and/or toTi. For

example: an “autoUpdateKrn” rule would always select the most-recently activated

KRN for the SGC, irrespective of toKrn; the effective TI may be dictated by a Tariff.

The technical operator is prevented from breaking these policies.

 The operation may fail if the VendingKey for the destination SGC & KRN is not

available.

 Failing to enter a KCT (issued by this endpoint) into a Meter will cause the meter’s

actual configuration to different from the system’s current configuration.

 The function is similar to the PrismVend UI’s “Key Change” tab, except that you can

also specify the meter’s “from” configuration.

Required inputs:

 meterId: Meter DRN or PAN (IDRecord not accepted)

 fromSgc, fromKrn, fromTi: actual configuration of the physical meter

 toSgc, toKrn, toTi: target configuration of the KCT, also stored to the database as the

meter’s current configuration.

Optional inputs:

 format: tsv|ini|xml

 messageId

 toEa, toTct: actual EncryptionAlgorithm and TokenCarrierType of the meter to use

when issuing the KCT, and to be stored to the database as part of the meter’s current

configuration. Required if the meter is not in the database; other defaults to the

meter’s current values in the database.

Outputs:

 HTTP status code 200 plus TSV/INI/XML body with fields as for /UpdateMeterKey.

 HTTP status code 400 "Bad Request": a required input field is missing, or any input

field has an invalid value

 HTTP status code 402 " Payment Required": insufficient transactions in SM to

complete the operation

 HTTP status code 415 "Unsupported Media Type": bad “format” input

 HTTP status code 422 " Unprocessable Entity ": well-formed request but could not be

processed, most likely because the meter could not be found in database and

toEa/toTct were not supplied

 HTTP status code 500 “Internal Server Error”: unhandled exception

Copyright © 2013-2023

PR-D2-1112 rev 5.22.2 Page 29 of 39

5. Integration Guide

In this section we provide recommendations on how to use the services of the PrismVend API
(section 4), and examples for some common use cases.

Each example develops an API concept; we urge you to read all examples, even
those that may not seem relevant to your metering requirements.

STS tokens are not predictable: each token contains both time-variant and
random data, and PrismVend detects and prevents duplicate tokens (as
required by the STS standard).

Our examples include generated tokens, but you should not expect to see the
same token values if you execute the example.

5.1 Recommended services

If you need to create Electricity, Water, Gas, Time, or Currency credit tokens for a given
currency value then you should use the Vend Credit Token service (section 4.4). This service
uses the PrismVend tariff tables (configured though the Web UI) to convert the currency value
into appropriate metering units.

If you need to create Electricity credit tokens for a given Watt-hour value then you should use
the Query Transaction Counter

Returns the number of transactions left in the module.

URL http://host/stsvend/QueryTx.format

Formats tsv, ini (default), xml

HTTP method(s) GET

Input
Parameters
(Required)

None

Status codes 200, 400, 405, 415, 500, 503

Output txCredit (required)

The quantity of transactions still available on the module. Given as a
positive integer.

5.1.1 Example of use #1 – XML response

Request

curl http://localhost:5081/stsvend/QueryTx.xml

Response

<?xml version=’1.0’ encoding=’ISO-8859-1’?>

<response>

 <txCredit>10000</priceExact>

</response>

Copyright © 2013-2023

PR-D2-1112 rev 5.22.2 Page 30 of 39

5.1.2 Example of use #2 – TSV response

Request

curl http://localhost:5081/stsvend/QueryTx.tsv

Response

txCredit 10000

5.1.3 Example of use #3 – INI response (format not specified)

Request

curl http://localhost:5081/stsvend/QueryTx

Response

txCredit=10000

 service (section 4.6). There is no equivalent support for Water, Gas, or Time tokens.

If you need to create Meter-Specific Engineering (MSE) tokens you should use the Vend
Meter-Specific Engineering Token service (section 4.5).

You should avoid using the following deprecated services:

 Calculate Watt-Hours (LEGACY)

5.2 Special warnings

The PrismVend Vending UI and the Web API behave slightly differently.

If you are getting different results from the UI and the Web API you should
check the following:

 The UI deducts transaction fees from the currency value before creating
the token; the Web API does not. Check the transaction fees on the STS
Administration page Fees And Preferences (fields Prism Transaction
Fee and Vendor Transaction Fee).

 The UI accepts a currency value in currency units (e.g. Rands, Dollars).
The Vend Credit Token service accepts a currency value in

1
/100 currency

units (i.e. “cents”). So if you entered $50.00 on the UI, you must use
value=5000 when calling the service.

5.3 Integration setup

The examples in this guide use the Compliance Test Specification (CTS) Test Keys. CTS is
the standard used to test & certify STS vending systems.

To work with these examples without modification you will need a Security Module (SM)
coded with the CTS MEK and KEK, and a Key Load File (KLF) containing the CTS Test Keys.
You can get all of these from Prism.

If you prefer to use real meters and an SM coded with live keys (obtained in a
KLF from a KMC) then you will need to replace the SGC and meter identification
in the following examples with the values for your Supply Group and Meters.

We use the following Vending Keys (from the CTS KLF):

SGC KRN Type

123456 1 VUDK (Unique key per meter)

Copyright © 2013-2023

PR-D2-1112 rev 5.22.2 Page 31 of 39

We use the following Meters (this table shows identification & configuration):

DRN SGC KRN TI EA TCT Type
(Subclass)

IDRecord

00000000000 123456 1 01 07 02 Electricity (0) 60072700000000000900000207123456011

01316700887 123456 1 01 07 02 Water (1) 60072701316700887100000207123456011

0315000000002 123456 1 01 07 02 Electricity/
Currency (4)

00000315000000002600000207123456011

We use the following Tariff Tables (you must set up these tables in the PrismVend UI):

SGC TI Subclass (Type) Rate

123456 01 0 (Electricity) $1.24 / kWh

123456 01 1 (Water) $1.50 / kL

The tariff table is expressed in local currency units. Credit vends must be
denominated in the same units. We use the symbol ‘$’ to indicate local
currency, not a specific national currency.

Transaction fees will be deducted from currency values when vending through
the PrismVend UI, but not when using the Web API’s Vend Credit Token method
(which is specified as using a value net of fees).

5.4 Examples

5.4.1 Electricity Credit Token, $50, Blind Vend

In this example we generate a credit token for an Electricity meter, with a credit value
equivalent to 50 currency units (5000 “cents”).

The meter is identified by a full 35-digit IDRecord (a “blind vend”). An IDRecord contains the
meter’s identification (the “MeterPAN”) as well as the meter’s configuration (SGC, KRN, TI,
EA, and TCT). All this information is required by the vending system in order to create a token
for the meter.

To generate this token the vending system will use the Vending Key for the meter’s SGC and
KRN. In this example SGC=123456 and KRN=1.

The vending system’s Tariff Tables are used to convert the currency value ($50) into resource
units understood by the meter (electricity meters only accept tokens with 100 Watt-hour
units). The meter’s SGC, TI, and type (subclass) are used to identify the relevant Tariff Table.
In this example the meter has SGC=123456, TI=01, and subclass=0, so the Tariff Table gives
a rate of $1.24 / kWh, which translates to a 404 × 100Wh credit token.

Note that the API requires the ‘value’ input to be in

1
/100 currency units (“cents”),

so for a value of $50.00 we must use value=5000.

Copyright © 2013-2023

PR-D2-1112 rev 5.22.2 Page 32 of 39

 Example of use – XML response

Request

curl http://localhost:8080/stsvend/VendCredit.xml -d subclass=0 -d

meterId=60072700000000000900000207123456011 -d value=5000

Response

<?xml version=’1.0’ encoding=’utf-8’?>

<response><idRecord>60072700000000000900000207123456011</idRecord>

<tariff>12.4</tariff>

<subclass>0</subclass>

<description>Sale – Credit:Electricity</description>

<vendTimeUnix>1458132240</vendTimeUnix>

<unitsActual>404</unitsActual>

<unitName>hWh</unitName>

<valueActual>5009.60</valueActual>

<tokenHex>28FE412A5E4F626F1</tokenHex>

<tokenDec>47261920893253068529</tokenDec>

</response>

The meanings of the response fields are described in the Vend Credit Token service (section
4.4). STS tokens are not predictable; you will get a different token each time to try this call.

5.4.2 Electricity Credit Token, $100, MSNO Vend

In this example we generate a credit token for an Electricity meter, with a credit value
equivalent to 100 currency units.

The meter is identified by a DRN (a “meter serial number only (MSNO) vend”). The DRN is a
shortened form of the MeterPAN (18 digits) that omits the IIN (the prefix “600727” or “0000”)
and the trailing PANCheckDigit. A DRN is thus 11 or 13 digits.

For an MSNO vend to work the vending system must know the meter’s configuration (SGC,
KRN, TI, EA, and TCT). The configuration may be known via a previous blind vend (e.g. the
use case in section 0), or by entering the meter’s configuration on the PrismVend UI.

As before the vending system must know the Vending Key (for SGC=123456 and KRN=1)
and will use the Tariff Table (for SGC=123456, TI=01, and subclass=0) to convert the
currency value into resource units for the meter.

 Example of use – XML response

Request

curl http://localhost:8080/stsvend/VendCredit.xml -d subclass=0 -d meterId=00000000000

-d value=10000

Response

<?xml version=’1.0’ encoding=’utf-8’?>

<response><idRecord>60072700000000000900000207123456011</idRecord>

<tariff>12.4</tariff>

<subclass>0</subclass>

<description>Sale – Credit:Electricity</description>

<vendTimeUnix>1458132540</vendTimeUnix>

<unitsActual>807</unitsActual>

<unitName>hWh</unitName>

Copyright © 2013-2023

PR-D2-1112 rev 5.22.2 Page 33 of 39

<valueActual>10006.80</valueActual>

<tokenHex>2A3440E4986998FDD</tokenHex>

<tokenDec>48658031982971293661</tokenDec>

</response>

The meanings of the response fields are described in the Vend Credit Token service (section
4.4). STS tokens are not predictable; you will get a different token each time to try this call.

5.4.3 Water Credit Token, $70, Blind Vend

In this example we generate a credit token for a Water meter, with a credit value equivalent to
70 currency units.

This example uses a different type of meter (Water) and thus a different Tariff Table (for
SGC=123456, TI=01, and subclass=1) that translates from currency value in water resource
units (100L). The Tariff Table gives a rate of $1.50 / kL, which translates to a 467 × 100L
credit token.

The meter is identified by a full 35-digit IDRecord (a “blind vend”), and the vending system
must know the Vending Key (for SGC=123456 and KRN=1).

 Example of use – XML response

Request

curl http://localhost:8080/stsvend/VendCredit.xml -d subclass=1 -d

meterId=60072701316700887100000207123456011 -d value=7000

Response

<?xml version=’1.0’ encoding=’utf-8’?>

<response><idRecord>60072701316700887100000207123456011</idRecord>

<tariff>15.0</tariff>

<subclass>1</subclass>

<description>Sale – Credit:Water</description>

<vendTimeUnix>1458132780</vendTimeUnix>

<unitsActual>467</unitsActual>

<unitName>hL</unitName>

<valueActual>7005.00</valueActual>

<tokenHex>3A9EC8DE22765BD9F</tokenHex>

<tokenDec>67584549710505295263</tokenDec>

</response>

The meanings of the response fields are described in the Vend Credit Token service (section
4.4). STS tokens are not predictable; you will get a different token each time to try this call.

5.4.4 Currency (Electricity) Credit Token, $120, Blind Vend

In this example we generate a 120 currency unit credit token for a Currency meter that
dispenses Electricity.

An Electricity/Currency meter dispenses electricity but accepts credit tokens giving a
Currency value rather than a resource unit value. To do this the meter has its own tariff table.
The vending system’s Tariff Tables are not used in this transaction; instead the currency
value ($120) is encoded into the STS token.

The meter is identified by a full 35-digit IDRecord (a “blind vend”), and the vending system
must know the Vending Key (for SGC=123456 and KRN=1).

Copyright © 2013-2023

PR-D2-1112 rev 5.22.2 Page 34 of 39

 Example of use – XML response

Request

curl –i http://localhost:8080/stsvend/VendCredit.xml -d subclass=4 -d

meterId=00000315000000002600000207123456011 -d value=12000

Response

HTTP/1.1 200 OK

Date: Wed, 16 Mar 2016 13:59:53 GMT

Server: Prism WSHOST

set-cookie: nsssession=56e966d9.QlKNgocWYUPKveWE00TH_w; Path=/

content-length: 439

content-type: text/xml; charset=utf-8

cache-control: no-store, no-cache, must-revalidate, max-age=0, post-check=0, pre-

check=0

expires: Sun, 01 Jul 2005 00:00:00 GMT

pragma: no-cache

vary: Accept-Encoding

<?xml version=’1.0’ encoding=’utf-8’?>

<response><idRecord>00000315000000002600000207123456011</idRecord>

<tariff>1000</tariff>

<subclass>4</subclass>

<description>Sale – Credit:CurrencyElec</description>

<vendTimeUnix>1458136740</vendTimeUnix>

<unitsActual>12.00024</unitsActual>

<unitName>currency</unitName>

<valueActual>12000.24</valueActual>

<tokenHex>17F1A301544549985</tokenHex>

<tokenDec>27605429733819718021</tokenDec>

</response>

The meanings of the response fields are described in the Vend Credit Token service (section
4.4). STS tokens are not predictable; you will get a different token each time to try this call.

5.4.5 Currency (Electricity) Credit Token, Replay prevention

In this example we generate a 60 currency unit credit token for a Currency meter that
dispenses Electricity, and we include the (optional) ‘messageId’ field in the request.

The ‘messageId’ is a unique transaction identifier that is used to detect and prevent replay of
the transaction. If you have attempted a transaction but not received a response (for example
there may be a timeout or a network interruption) then you cannot be sure whether the
transaction was processed or not. In such a case you should resubmit the transaction with the
same ‘messageId’

The ‘messageId’ is also useful to identify the origin of the transaction. Refer to Vend Credit
Token (section 4.4) for recommended construction of this identifier.

Replay previous (using ‘messageId’) applies to all services, not just Vend Credit Token. We
strongly recommend using it.

The meter is identified by a DRN. The vending system must know the meter’s configuration
(SGC, KRN, TI, EA, and TCT; e.g. from use case 5.4.4) and the Vending Key required by that
configuration (SGC, KRN). No Tariff Tables are required.

Copyright © 2013-2023

PR-D2-1112 rev 5.22.2 Page 35 of 39

 Example of use – XML response

Request

curl –i http://localhost:8080/stsvend/VendCredit.xml -d subclass=4 -d

meterId=00000315000000002600000207123456011 -d value=12000 -d messageId=POS.23.4-

emp0139-20130818T154023Z

Response

HTTP/1.1 200 OK

Date: Wed, 16 Mar 2016 14:02:16 GMT

Server: Prism WSHOST

set-cookie: nsssession=56e96768.BUrRRLOomdLq_XowR0i2jg; Path=/

content-length: 439

content-type: text/xml; charset=utf-8

cache-control: no-store, no-cache, must-revalidate, max-age=0, post-check=0, pre-

check=0

expires: Sun, 01 Jul 2005 00:00:00 GMT

pragma: no-cache

vary: Accept-Encoding

<?xml version=’1.0’ encoding=’utf-8’?>

<response><idRecord>00000315000000002600000207123456011</idRecord>

<tariff>1000</tariff>

<subclass>4</subclass>

<description>Sale – Credit:CurrencyElec</description>

<vendTimeUnix>1458137040</vendTimeUnix>

<unitsActual>12.00024</unitsActual>

<unitName>currency</unitName>

<valueActual>12000.24</valueActual>

<tokenHex>0069D557A4050FE50</tokenHex>

<tokenDec>00476631119124561488</tokenDec>

</response>

The meanings of the response fields are described in the Vend Credit Token service (section
4.4). STS tokens are not predictable; you will get a different token each time to try this call.

5.4.6 Replayed transaction is rejected

In this example we repeat the API call from the previous example (section 5.4.5) using the
same messageId, simulating a replay scenario.

 Example of use – XML response

Request

curl -i http://localhost:8080/stsvend/VendCredit.xml -d subclass=4 -d

meterId=00000315000000002600000207123456011 -d value=12000 -d messageId=POS.23.4-

emp0139-20130818T154023Z

Response

HTTP/1.1 500 Internal Server Error

Date: Wed, 16 Mar 2016 14:03:10 GMT

Server: Prism WSHOST

set-cookie: nsssession=56e9679d.kJHcF2sBw_31asIHE4bXqg; Path=/

content-length: 353

Copyright © 2013-2023

PR-D2-1112 rev 5.22.2 Page 36 of 39

content-type: text/html; charset=utf-8

cache-control: no-store, no-cache, must-revalidate, max-age=0, post-check=0, pre-

check=0

expires: Sun, 01 Jul 2005 00:00:00 GMT

pragma: no-cache

vary: Accept-Encoding

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN”

“http://www.w3.org/TR/html4/loose.dtd”>

<html>

<head>

<title>Internal Server Error</title>

</head>

<body>

<h1>Internal Server Error</h1>

<p>Vend credit operation failed. 'Message ID not unique: SQL query failed: UNIQUE

constraint failed: t_commits_cdu.commitRef'</p>

</body>

</html>

5.4.7 Clear Credit Management Token, MSNO Vend

The Vend Meter-Specific Engineering Token service (section 4.5) is used to generate all
management tokens.

In this example we create a “Clear Credit” management token. The token function (“Clear
Credit”) is identified by subclass=1. For this function the ‘supp’ field is a bitmap indicating
which credit registers to clear; we will use supp=65535 to clear all credit registers.

The meter is identified by a DRN (making this an “MSNO vend”). As with calls to Vend Credit
Token we could have identified the meter by a full IDRecord (a “blind vend”). Since we identify
the meter by DRN the vending system must know the meter’s configuration. In all cases the
Vending Key corresponding to the meter’s configuration (SGC, KRN) is required to create the
token.

 Example of use – XML response

Request

curl http://localhost:8080/stsvend/VendMse -d subclass=1 -d meterId=00000000000 -d

supp=65535

Response

<?xml version=’1.0’ encoding=’utf-8’?>

<response><idRecord>60072700000000000900000207123456011</idRecord>

<subclass>1</subclass>

<description>Tech – ClearCredit</description>

<vendTimeUnix>1458134460</vendTimeUnix>

<unitsActual>65535</unitsActual>

<unitName>regno</unitName>

<tokenHex>0CD3D1B9BF534F691</tokenHex>

<tokenDec>14789007108002346641</tokenDec>

</response>

Copyright © 2013-2023

PR-D2-1112 rev 5.22.2 Page 37 of 39

The meanings of the response fields are described in the Vend Meter-Specific Engineering
Token service (section 4.5). STS tokens are not predictable; you will get a different token
each time to try this call.

Copyright © 2013-2023

PR-D2-1112 rev 5.22.2 Page 38 of 39

6. Amendment History

Version Description Person Date

3.9.0 Duplicate of PR-D2-0835 (StsClosedVending
API).

TD 2013/03/06

3.29.0 Document adapted from PR-D2-0835 “Prism
STS Vending Web Service” (rev 3.9.0).

Updated to indicate legacy services, and to
document the “Vend Credit” service.

TD 2013/09/05

3.32.0 Added “Vend Meter-Specific Engineering
Token” service.

TD 2013/10/24

4.17 Added table of management functions to Vend
Meter-Specific Engineering Token.

Added the Integration Guide and examples.

TD, CA 2016/03/14

4.17.1 Fixed description of ‘idRecord’ output field in
VendCredit.

TD 2016/04/29

4.23.8 Updated docs for Vend Credit Token, in
particular the response fields unitName and
valueActual.

TD 2016/07/22

4.27.4 Removed references to outdated readme CA 2015/09/30

4.27.12 Added new subclass value to the VendCredit
API function. If -1 is specified the CDU will
perform a database look up to determine the
resource type of the registered meter

CA 2017/01/29

4.29 Added a new call \QueryTx, which queries the
transaction counter

CM 2017/02/04

4.35 Changed the description of ‘Meter Key Change’
under ‘Supported Subclasses’ to point to the
User Interface

CM 2017/03/23

4.36 Added terms, definitions and abbreviations
section

CA 2017/04/28

4.37 Removed all legacy API commands that are
either unsupported or have replacement
commands.

CA 2017/12/11

4.38 Fixed all curl examples so that they can be
copied, pasted and executed in a console.

CA 2018/08/23

4.40 Added /Meter endpoint which allows the user to
query a specific meters configuration

CA 2021/11/25

5.20 Added support for KCT over the API. STS6 only CA 2023/05/21

5.22 /VendCredit2 now supports AutoKct for EA=07
and EA=11.

Improved Meter Management API docs.

TD 2023/10/11

Copyright © 2013-2023

PR-D2-1112 rev 5.22.2 Page 39 of 39

	1. Contents
	2. Installing & Using the Web Service
	2.1 Installation
	2.2 Starting & Stopping the service
	2.3 Configuration
	2.4 Accessing web services
	2.5 Security procedures in a production environment
	2.6 Troubleshooting
	2.7 Upgrading the software
	2.8 Uninstalling the software

	3. Application Programming Interface (API)
	3.1 Overview
	3.2 Terms, definitions and abbreviations
	3.3 Access control and authentication
	3.4 Status codes
	3.5 Output formats (representations)
	3.5.1 INI (default)
	3.5.2 TSV
	3.5.3 XML

	3.6 Debugging
	3.7 Tariff File Format

	4. PrismVend API
	4.1 API services
	4.2 Legacy API services
	4.3 Meter Management services
	4.4 Vend Credit Token (VendCredit2)
	4.4.1 Example of use #1 – INI response (with HTTP headers shown)
	4.4.2 Vend Credit Token (old)
	Example of use #1 – XML response
	Example of use #2 – INI response (with HTTP headers shown)

	4.5 Vend Meter-Specific Engineering Token
	4.6 Query Transaction Counter
	4.6.1 Example of use #1 – XML response
	4.6.2 Example of use #2 – TSV response
	4.6.3 Example of use #3 – INI response (format not specified)

	4.7 Calculate Watt-Hours (LEGACY)
	4.7.1 Example of use #1 – XML response
	4.7.2 Example of use #2 – TSV response
	4.7.3 Example of use #3 – INI response (format not specified)

	4.8 Meter Management API: Overview
	4.8.1 Meter Record

	4.9 Get Meter Information (GET/stsvend/Meter/drnOrPan.format)
	4.10 Set Meter Information (POST/stsvend/Meter/drnOrPan.format)
	4.11 Update Meter Key (POST/stsvend/UpdateMeterKey.format)
	4.12 Engineering Key Change (POST/stsvend/EngineeringKeyChange)

	5. Integration Guide
	5.1 Recommended services
	5.1.1 Example of use #1 – XML response
	5.1.2 Example of use #2 – TSV response
	5.1.3 Example of use #3 – INI response (format not specified)

	5.2 Special warnings
	5.3 Integration setup
	5.4 Examples
	5.4.1 Electricity Credit Token, $50, Blind Vend
	Example of use – XML response

	5.4.2 Electricity Credit Token, $100, MSNO Vend
	Example of use – XML response

	5.4.3 Water Credit Token, $70, Blind Vend
	Example of use – XML response

	5.4.4 Currency (Electricity) Credit Token, $120, Blind Vend
	Example of use – XML response

	5.4.5 Currency (Electricity) Credit Token, Replay prevention
	Example of use – XML response

	5.4.6 Replayed transaction is rejected
	Example of use – XML response

	5.4.7 Clear Credit Management Token, MSNO Vend
	Example of use – XML response

	6. Amendment History

